Hyperplane sections of convex bodies

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euclidean sections of convex bodies

This is a somewhat expanded form of a four hours course given, with small variations, first at the educational workshop Probabilistic methods in Geometry, Bedlewo, Poland, July 6-12, 2008 and a few weeks later at the Summer school on Fourier analytic and probabilistic methods in geometric functional analysis and convexity, Kent, Ohio, August 13-20, 2008. The main part of these notes gives yet a...

متن کامل

Gaussian Measure of Sections of convex bodies

In this paper we study properties of sections of convex bodies with respect to the Gaussian measure. We develop a formula connecting the Minkowski functional of a convex symmetric body K with the Gaussian measure of its sections. Using this formula we solve an analog of the Busemann-Petty problem for Gaussian measures.

متن کامل

Asymptotics of Cross Sections for Convex Bodies

For normed isotropic convex bodies in R n we investigate the behaviour of the (n ? 1)-dimensional volume of intersections with hyperplanes orthogonal to a xed direction, considered as a function of the distance of the hyperplane to the origin. It is a conjecture that for arbitrary normed isotropic convex bodies and random directions this function { with high probability { is close to a Gaussian...

متن کامل

Extremal Distances between Sections of Convex Bodies

Let K, D be convex centrally symmetric bodies in R. Let k < n and let dk(K, D) be the smallest Banach–Mazur distance between k-dimensional sections of K and D. Define ∆(k, n) = sup dk(K, D), where the supremum is taken over all n−dimensional convex symmetric bodies K, D. We prove that for any k < n ∆(k, n) ∼log n {√ k if k ≤ n k2 n if k > n , where A ∼log n B means that 1/(C log n) ·A ≤ B ≤ (C ...

متن کامل

The volume product of convex bodies with many hyperplane symmetries

Mahler’s conjecture predicts a sharp lower bound on the volume of the polar of a convex body in terms of its volume. We confirm the conjecture for convex bodies with many hyperplane symmetries in the following sense: their hyperplanes of symmetries have a one-point intersection. Moreover, we obtain improved sharp lower bounds for classes of convex bodies which are invariant by certain reflectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2008

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2008.01.069